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Vibration Analysis of Rotating Composite Cantilever Plates
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A modeling method for the vibration analysis of rotating composite cantilever plates is
presented in this paper. The coupling effects between inplane motions and the bending motion
are considered and explicit mass and stiffness matrices are derived for the modal analysis.
Numerical results are obtained and some of them are compared to those of a commercial
program to confirm the accuracy of the present method. Numerical results show that the
coupling effects become important only when laminates are stacked up unsymmetrically.
Incidentally, natural frequencies loci veering, loci crossing, and associated mode shape
variations are observed.
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1. Introduction

Composite materials, especially laminated
composite plates, have been widely used in vari
ous kinds of engineering such as aeronautics,
astronautics, and marine structures. In addition to
the advantages of high strength (as well as high
stiffness) and light weight, another advantage of
laminated composite plate is the controllability of
the structural properties through changing the
fiber orientation angles and the number of plies
and selecting proper composite materials, over a
wide range.

As the importance of high strength and light
weight rises, the study on vibration of composite
structures has been actively progressed in the
1980s. Flexible structures having slender shapes
are often idealized as beams since reliable and
robust theories for beams, which can provide
accurate numerical results in most cases, are av-
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ailable. Many structures, however, have plate-like
shapes (rather than beam-like shapes). Solar
panels of satellites, turbine blades, and aircraft
rotary wings with small aspect ratios are such
examples. These structures can be analyzed more
accurately by modeling them as plates rather than
beams. Recently, many research works for
rotating cantilever plate have been made
(Dokanish, 1971; Ramamurti, 1984). These works
employed finite element techniques and strain
energy expressions which were obtained from
equilibrium conditions between the centrifugal
inertia forces and the steady-state in
plane stress components. On the basis of this
approach, the modal characteristics of rotating
plates could be estimated by calculating explicit
stiffness matrices. This approach, however,
involves with unnecessary assumptions and com
plexities which result in two-step procedure to
derive the equations of motion for rotating plates.
Due to the complexities, this approach is ex
tremely difficult to be applied to practical
problems. Recently, a new modeling method,
which employs a hybrid set of deformation
variables, was introduced (Yeo, 2001). This
modeling method is as efficient as the above
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method but much simpler than the previous
method in deriving the equations of motion and
performing the numerical analysis. This modeling
method, however, was applied to only isotropic
plates rather than composite plates so far.

The purpose of this paper is to investigate the
variations of modal characteristics of the rotating
composite plate. The equations of motion are
derived and transformed into dimensionless
forms. Dimensionless parameters are identified
and the effects of angular speed and the fiber
orientation angle on the modal characteristics are
investigated. Especially, the importance of the
coupling effects between inplane and bending
motion is clarified. Incidentally, natural frequen
cy loci veering, loci crossing, and associated mode
shape variations are exhibited and discussed.

2. Formulation for Vibration Analysis

2.1 Stain energy of composite cantilever
plates

Figure I shows that a rotating rectangular plate
which is characterized by natural length a, width
b and thickness h is attached to a rigid hub which
rotates with a constant angular speed Q. The
laminated plate geometry and ply numbering sys
tem is shown in Fig. 2 and the coordinates and
fiber direction of kth-layer cross-ply laminated
composite plate are shown in Fig. 3. As shown in
Fig. 2, the plies are numbered from bottom to top.

In the present work, two in-plane variables
along with the lateral displacement variable are
approximated to obtain the ordinary differential
equations of motion. By using the Rayleigh-Ritz
method, the approximations are given as follows:

"sex, y, t) =~ ¢Jli(x, y) qli(t) (I)
1'=1

"rex, y, t) =~ ¢Ju(x, y)qu(t) (2)
i=1

"w(x, y, t)=~ ¢J3i(X, y)q3i(t) (3)
1'=1

where ¢Jli, ¢Ju, and ¢J3i are spatial mode functions.
Any compact set of admissible functions, which
satisfy the geometric boundary conditions of the
plate can be used as the mode functions. a.» are
generalized coordinates and f.i. is the total number
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Fig. 1 Configuration of a rotating composite re
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Fig. 2 Laminated plate geometry and ply numbering
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Fig. 3 Fiber direction of kth-Iayer cross-ply
laminated composite plate

of the generalized co-ordinates. The transverse
shear deformation is ignored to simplify the
formulation employed in this work. The shear
effect becomes important when the plate has a
dimension with large thickness. Including the
shear effect is not a major problem. Nonetheless,
since it is not the major issue here, it is ignored in
this work. Then, the elastic strain energy of a
composite plate can be expressed as follows
(Whitney, 1987):

u=...!... r (a[A (1£)2+2A as ar
2)0)0 11 ax 12 ax ay

(
ar )2 (as ar )+A 22 ay +2 A 16ax +A26JY
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(5)

where a comma denotes partial differentiation
with respect to subscripts that follow. If m is 1, r
represents ~ and if m is 2, r represents TJ.

B4.= T: B .. Dt= T: D .. [)7,.=~D ..
v ob v. " pa ", " pa-b- U

[jf,.= T: D .. D4·=-J:TD .. ~.=LD.. (8)
u- ab u, u- pa-b u. u- oab' U

where p is the mass per unit area of the composite
plate. Qr and T are given as

Q =j D11 T= Ql
r

(9)
r- oa"

(13)

(14)

(15)

(16)

(17)

(18)

Mbl=1111

t:p"'it:pTJd~dTJ

Kga"'I·11I1I=A~1111

t:p"'i,rmt:pl,j,r,.d~dTJ

Kga ·l11UI=B~1111

t:p"'i,r,If'3.j.rmr,.d~dTJ

sr 1.11111 =D~I 1
J:1If'3i,r,.r,~mr,.d~dTJ

Kgxt=I 1
J:1(1-~) If'3i,flf'3.j.,d~dTJ

I
1J:1 1KF= 0 0 T( 1-~2) If'3i,flf'3.j.fd~dTJ

Using these dimensionless variables and
parameters, the following linear dimensionless
equations of motion for composite plate can be
derived eventually.

/' "
~ [Mb1c9u + (- co2Mb1+ Kjl11.11 + Kf? 11.12
j=l

+ Kf?11,21+Kff311,22) c9u+ (Kf? 12.22+ Kgl l2,12

+ Kff312,11+ Kf? l2,21) fhJ+2wMb3193j (10)
+(- Kgt 1.111_Kf 1.122 - Kfj31,211_2K? 1.112
- K541,222-2Kf 1,212) c9s;] =0

/' -
~ [M~c92j+ (Kff322.22+K~22,21+K~22.12
j=1

+Kgl22,l1 ) c92j+ (-K?2,2l1_ K?2.222-K512,1ll
- Kf2.122_2Kf2,212_2Kf2.112) c93j+ (K~21,21

+ Kg12l,1l +Kff3 21,22 +K~ 21..12) au] =0 ( II)

±[M: i9s; + ( - aiM:J! + KB111.11 + Kf 11,22
j=1

+Kf 22,11 + Kr 22,22 + 2KB4U,12 + 2KB412.11

+2Kf 22,12 + 2Kf 12,22+4KC: 12,12 + (JaiKgxt
+#KF) c9s;+(-K511•111 - Kf l .122 (12)
- K? 1,211_2K? 1.121_K? 1,.222 - 2Kf 1,221) c9u
+(- K? 2,2l1_K;C4 2.222 - K[j1 2,1ll_Kf 2,122
-2Kf2.221_2K?2,121) c92j-2CO~119u] =0

where2.2 Modal formulation
Using Eq. (4), equations of motion for the

composite plate can be obtained. It is useful to
rewrite these equations in a dimensionless form.
For the purpose, the following dimensionless
variables, parameter, and functions are
introduced.

L=~' ~=~, TJ=1' c9j=~

rPi(X. y) =t:pi(~. TJ)' co= ~ , (J=.I....
~r a

At= T;A .. A 2.= T
2

A .. A~.= T~A ..» r: p v, v- aab v, v- pb v

B1.= T: B .. B~·= T
2
2B .. B~.=~B ..

v pa v' " pab v, " oa'b U

where matrices A ii, B ii, and Dii can be obtained
by integrating material properties of each layer
shown in Fig. 2 as follows:

i
hl2 N

A ii= Q~"')dz=~ Q~"')(Z... -Z"'-l)
-h12 "'=1

i
hl2 1 N

B ii= Qi]')zdz=-~ Q~"')(~-~-l) (6)
-h12 2 "'=1

i
h12 1 N

Dii= Q~"')z2dz=-~ Q~"')(zi-zi-1) (7)
-h12 3 "'=1

where Q~"') are the off-axis stitTnesses of kth layer
(Whitney, 1987), z... and Z...-l are the distance
from the mid-plane to the top and bottom surface
of the kth layer, and N is the total number of
laminated layers.
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Using Eqs. (10), (II), and (12), the matrix
form of the equations of motion can be derived as
follows:

where

Mq+Cq+Kq=O

[

Mb1 0 0]
M= 0 M'ff 0

o 0 M'tl'

[

0 0 2(OMb
3]

C= 0 0 0
-2(OM~1 0 . 0

[
s; K 12 K13]

K= lGl & &
&1&&-

(19)

(20)

(21)

(22)

Table 1 Material properties of the composite plate

Material E1(Gpa) Ez(Gpa) GI2(Gpa) 1112

T300/52m 181 10.3 7.17 0.28

Table 2 Comparison of natural frequencies
obtained by ANSYS and the present
modeling

Mode Present ANSYS Error(%)

I 1.0479 1.0422 0.55

2 1.9816 1.9567 1.27

3 4.6503 4.5453 2.31

4 6.6018 6.5249 1.18

5 8.0411 7.8710 2.16

6 10.0365 9.7834 2.58

where K is the symmetric matrix whose respective
element matrices Kii are defined as

K ll = - arMil +K S111,11+ K S2 11,12 +K S2 11,21

+ K S3 11,22

K 12= K21 = K S2 l2,22+K S112,12+K S312,11+K S2 12,21
K 13= &1= - K C11,lll _ K C2 1:122 - K C3 1,211

_ 2KC31.112 _ 2KC41,222 _ 2KC21,212

&=KS322.22+ K S222,21 +K S222,12+ K SI22•11

& = &= _ KC32,211_ KC4 2,222 _ KCI2.111
_ K C2 2,122 _ 2KC22,212 _ 2KC22.112

& = _ (02M 33 +K B111,11+K B2 11,22+KB222,11

+ K BJ 22.22+2KB411.12+2KB412,11 +2KBS22,12

+2KBS 12,22+4KB2 12,12+ <JarK GXl +(02K GX2

In order to use a complex modal analysis
method, Eq. (19) is transformed into the follow
ing form.

M* i]+K* 7]=0 (23)

where

M*=[~ ~] (24)

K*=[ C KJ (25). -I 0

7]={:} (26)

An eigenvalue problem can be derived by
assuming that TJ is a harmonic matrix function of
t: expressed as

(27)

where A is the complex eigenvalue and e is the

complex mode shape. Substituting Eq. (27) into
Eq. (23) yields

(28)

3. Numerical Results

In this section, the numerical results are
obtained by using the modal equations which are
introduced in chapter 2. To solve the eigenvalue
problem for the rotating composite. plates, as
sumed mode functions are employed. In the
present work, five cantilever beam functions and,
seven free-free beam functions which include two
rigid body mode functions are employed to con
struct 35 plate mode functions. The number of
mode functions are presumably sufficient to in
sure adequate convergence for the lowest six
eigensolutions. First of all, the numerical results
obtained by using the present modeling method
are compared to those of ANSYS for a non
rotating composite plate. In the computation, the
plate is made up of eight laminates with the fiber
orientations [0, 45, -45, 90Js, and the composite
material is T300/5208. Th~ mechanical properties
of the material are given in Table 1. It is shown in
Table 2 that the lowest six natural frequencies
obtained by the present modeling method agree
well with those of ANSYS.

Figure 4 shows the variations of the lowest six
dimensionless natural frequencies for rotating
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Fig. 4 Variation of the lowest six natural frequencies
for rotating plate

fifth, and the sixth modes seem to be switched one
another. These mode shape variations result from
eigenvalue loci veering and crossing as shown in
Fig. 4. These phenomena are well explained by H.
H. Yoo (1993). Although laminates are
symmetrically stacked up with respect to neutral
axis, modal line patterns are found to be
unsymmetric. The reason for this comes from D16

and IJ.u. terms which represent the flexural
torsional coupling effect in matrix Dij of Eq. (7).
This same phenomenon is also found by T.
Maeda, V. Baburaj, Y. Ito, and T. Koga (1998).
The flexural-torsional coupling effects, however
seem to disappear as the increase of angular speed
of the plate as shown in Fig. 5 (b). This is because
the motion-induced stiffness variation terms K GXl

and K GX2 become more dominant than the struc
tural stiffness as the angular speed increases.

Figure 6 (a) shows the variations of the lowest

(b) Lowest six mode shape with rotation ((0=20)

Fig. 5 Nodal line patterns of lowestsix mode shapes
with and without rotating motion

plate with fiber orientations[0, 45, -45, 90]s.
The interesting phenomena observed from Fig. 4.
The fifth and sixth eigenvalue loci veer around
(/)=7 and the fourth and fifth eigenvalue loci
cross around w=9.

Figures 5(a) and 5(b) show the nodal lines of
the lowest six mode shapes when the
dimensionless angular speed is 0 and 20.
Comparing the mode shapes of rotating plate to
those of the non-rotating plate, the fourth, the

(a) Lowest six mode shape without rotation ((0=0)
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(b) Fiber orientationj IO, 20, 30, 40, 50, 60, 70, 80]

Fig. 6 Variation of the lowest six natural frequencies
for rotating plate with and without coupling
effect
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six dimensionless natural frequencies for rotating
plate with fiber orientations [0, 45, -45, 90h.

The solid lines represent the results of considering
the extensional-bending coupling effects and the
dotted lines represent the results of ignoring the
coupling effects. When laminates are
symmetrically stacked up with respect to neutral
axis as shown in Fig. 5 (a), the results obtained by
considering coupling effects are almost identical
to those obtained by ignoring coupling effects. On
the other hand, Fig. 6 (b) shows the variations of
the lowest six dimensionless natural frequencies
for a rotating plate with unsymmetrical fiber
orientations [10, 20, 30, 40, 50, 60, 70, 80]. It

shows that the results obtained by considering the
coupling effects are significantly different from
those obtained by ignoring the coupling effects.
Therefore, if laminates are unsymmetrically
stacked up with respect to neutral axis, the
coupling effects influence the modal char-

3D

I: Bl-T

j 15

j: IT

16
0

0 10 3l 3D «l 50 Ell JO III !lIl

PnJe(deg)

(a) w=O

35

l~
ll: 2S

j 3l

I::
i 5

o
o • 3l 3D «l 50 Ell JO Ell !lIl

Mje(deg)

(b) w= 10

Fig.7 Variation of the lowest six natural frequencies
due to fiber angle change

acteristics considerably. In this case, B ii which is
the coupling stiffness matrix from Eq. (4) is not
zero.

The variations of dimensionless natural fre
quencies of a square plate for the fiber
orientations [0, 8, -8, 90h are shown in Fig. 7.
The effect of the fiber angle 8 is shown in Fig. 7.
Figure 7 (a) shows the dimensionless natural fre
quency variations without rotation and Fig. 7 (b)
shows the dimensionless natural frequency
variations with dimensionless angular speed (J)=

10. These figures indicate that the natural fre
quencies of bending modes decrease as the fiber
angle increases. Those of the chordwise bending
modes, however, increase as the fiber angle
increases.

4. Conclusions

In this paper, a modeling method for the modal
analysis of rotating composite plates is presented.
Using the modeling method, the effects of angular
speed and the fiber angle orientation on the
modal characteristics are obtained. As
dimensionless angular speed and laminated angle
are varied, natural frequencies loci veering, loci
crossing, and associated mode shape variations
are observed. Especially, when laminates are
unsymmetrically stacked up with respect to neu
tral axis, it is found that the accurate results can
be obtained by using equation of motions which
consider the coupling effects between extensional
motions and the bending motion. Finally, it is
concluded that various mode shape variations can
be observed by changing a laminate angles of
layers. The presenting modeling method can be
usefully employed for the design of rotating com
posite plate structures.
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